Антитела выполняют функцию. Основные функции антител. Как вырабатываются антитела

В ответ на присутствие антигенов. Для каждого антигена формируются соответствующие ему специализировавшиеся плазматические клетки, вырабатывающие специфичные для этого антигена антитела. Антитела распознают антигены, связываясь с определённым эпитопом - характерным фрагментом поверхности или линейной аминокислотной цепи антигена.

Антитела состоят из двух лёгких цепей и двух тяжелых цепей. У млекопитающих выделяют пять классов антител (иммуноглобулинов) - IgG, IgA, IgM, IgD, IgE, различающихся между собой по строению и аминокислотному составу тяжёлых цепей и по выполняемым эффекторным функциям.

История изучения

Самое первое антитело было обнаружено Берингом и Китазато в 1890 году , однако в это время о природе обнаруженного столбнячного антитоксина, кроме его специфичности и его присутствия в сыворотке иммунного животного, ничего определенного сказать было нельзя. Только с 1937 года - исследований Тизелиуса и Кабата, начинается изучение молекулярной природы антител. Авторы использовали метод электрофореза белков и продемонстрировали увеличение гамма-глобулиновой фракции сыворотки крови иммунизированных животных. Адсорбция сыворотки антигеном , который был взят для иммунизации, снижала количество белка в данной фракции до уровня интактных животных.

Строение антител

Антитела являются относительно крупными (~150 кДа - IgG) гликопротеинами , имеющими сложное строение. Состоят из двух идентичных тяжелых цепей (H-цепи, в свою очередь состоящие из V H , C H1 , шарнира, C H2 и C H3 доменов) и из двух идентичных лёгких цепей (L-цепей, состоящих из V L и C L доменов). К тяжелым цепям ковалентно присоединены олигосахариды. При помощи протеазы папаина антитела можно расщепить на два Fab (англ. fragment antigen binding - антиген-связывающий фрагмент) и один (англ. fragment crystallizable - фрагмент, способный к кристаллизации). В зависимости от класса и исполняемых функций антитела могут существовать как в мономерной форме (IgG, IgD, IgE, сывороточный IgA) так и в олигомерной форме (димер-секреторный IgA, пентамер - IgM). Всего различают пять типов тяжелых цепей (α-, γ-, δ-, ε-и μ- цепи) и два типа легких цепей (κ-цепь и λ-цепь).

Классификация по тяжелым цепям

Различают пять классов (изотипов ) иммуноглобулинов, различающихся:

  • величиной
  • зарядом
  • последовательностью аминокислот
  • содержанием углеводов

Класс IgG классифицируют на четыре подкласса (IgG1, IgG2, IgG3, IgG4), класс IgA - на два подкласса (IgA1, IgA2). Все классы и подклассы составляют девять изотипов, которые присутствуют в норме у всех индивидов. Каждый изотип определяется последовательностью аминокислот константной области тяжелой цепи.

Функции антител

Иммуноглобулины всех изотипов бифункциональны. Это означает, что иммуноглобулин любого типа

  • распознает и связывает антиген, а затем
  • усиливает киллинг и/или удаление иммунных комплексов, сформированных в результате активации эффекторных механизмов.

Одна область молекулы антител (Fab) определяет ее антигенную специфичность, а другая (Fc) осуществляет эффекторные функции: связывание с рецепторами, которые экспрессированы на клетках организма (например, фагоцитах); связывание с первым компонентом (C1q) системы комплемента для инициации классического пути каскада комплемента.

Имеет в виду то, что каждый лимфоцит синтезирует антитела только одной определенной специфичности. И эти антитела располагаются на поверхности этого лимфоцита в качестве рецепторов.

Как показывают опыты, все поверхностные иммуноглобулины клетки имеют одинаковый идиотип: когда растворимый антиген , похожий на полимеризованный флагеллин , связывается со специфической клеткой, то все иммуноглобулины клеточной поверхности связываются с данным антигеном и они имеют одинаковую специфичность то есть одинаковый идиотип.

Антиген связывается с рецепторами, затем избирательно активирует клетку с образованием большого количества антител. И так как клетка синтезирует антитела только одной специфичности, то эта специфичность должна совпадать со специфичностью начального поверхностного рецептора.

Специфичность взаимодействия антител с антигенами не абсолютна, они могут в разной степени перекрестно реагировать с другими антигенами. Антисыворотка, полученная к одному антигену, может реагировать с родственным антигеном, несущим одну или несколько одинаковых или похожих детерминант . Поэтому каждое антитело может реагировать не только с антигеном, который вызвал его образование, но и с другими, иногда совершенно неродственными молекулами. Специфичность антител определяется аминокислотной последовательностью их вариабельных областей.

Клонально-селекционная теория :

  1. Антитела и лимфоциты с нужной специфичностью уже существуют в организме до первого контакта с антигеном.
  2. Лимфоциты, которые участвуют в иммунном ответе, имеют антигенспецифические рецепторы на поверхности своей мембраны. У B-лимфоцитов рецепторы- молекулы той же специфичности, что и антитела, которые лимфоциты впоследствии продуцируют и секретируют.
  3. Любой лимфоцит несет на своей поверхности рецепторы только одной специфичности.
  4. Лимфоциты, имеющие антиген , проходят стадию пролиферации и формируют большой клон плазматических клеток. Плазматические клетки синтезируют антитела только той специфичности, на которую был запрограммирован лимфоцит-предшественник. Сигналами к пролиферации служат цитокины , которые выделяются другими клетками. Лимфоциты могут сами выделять цитокины.

Вариабельность антител

Антитела являются чрезвычайно вариабельными (в организме одного человека может существовать до 10 8 вариантов антител). Все разнообразие антител проистекает из вариабельности как тяжёлых цепей, так и лёгких цепей. У антител, вырабатываемых тем или иным организмом в ответ на те или иные антигены, выделяют:

  • Изотипическая вариабельность - проявляется в наличии классов антител (изотипов), различающихся по строению тяжёлых цепей и олигомерностью, вырабатываемых всеми организмами данного вида;
  • Аллотипическая вариабельность - проявляется на индивидуальном уровне в пределах данного вида в виде вариабельности аллелей иммуноглобулинов - является генетически детерминированным отличием данного организма от другого;
  • Идиотипическая вариабельность - проявляется в различии аминокислотного состава антиген-связывающего участка. Это касается вариабельных и гипервариабельных доменов тяжёлой и лёгкой цепей, непосредственно контактирующих с антигеном.

Контроль пролиферации

Наиболее эффективный контролирующий механизм заключается в том, что продукт реакции одновременно служит ее ингибитором . Этот тип отрицательной обратной связи имеет место при образовании антител. Действие антител нельзя объяснить просто нейтрализацией антигена, потому что целые молекулы IgG подавляют синтез антител намного эффективнее, чем F(ab")2 -фрагменты. Предполагают, что блокада продуктивной фазы T-зависимого B-клеточного ответа возникает в результате образования перекрестных связей между антигеном, IgG и Fc - рецепторами на поверхности B-клеток. Инъекция IgM, усиливает иммунный ответ . Так как антитела именно этого изотипа появляются первыми после введения антигена, то на ранней стадии иммунного ответа им приписывается усиливающая роль.

  • А. Ройт, Дж. Брюсстофф, Д. Мейл. Иммунология- М.: Мир, 2000 - ISBN 5-03-003362-9
  • Иммунология в 3 томах / Под. ред. У. Пола.- М.:Мир, 1988
  • В. Г. Галактионов. Иммунология- М.: Изд. МГУ, 1998 - ISBN 5-211-03717-0

См. также

  • Абзимы - каталитически активные антитела
  • Авидность , аффинность - характеристики связывания антигена и антитела

Выделяют пять классов антител (иммуноглобулинов) - IgG, IgA, IgM, IgD, IgE, различающихся между собой по строению и аминокислотному составу тяжёлых цепей и по выполняемым эффекторным функциям.

История изучения

Самое первое антитело было обнаружено Берингом и Китазато в 1890 году , однако в то время о природе обнаруженного столбнячного антитоксина , кроме его специфичности и его присутствия в сыворотке иммунного животного, ничего определенного сказать было нельзя. Только с 1937 года - исследований Тиселиуса и Кабата, началось изучение молекулярной природы антител. Авторы использовали метод электрофореза белков и продемонстрировали увеличение гамма-глобулиновой фракции сыворотки крови иммунизированных животных. Адсорбция сыворотки антигеном , который был взят для иммунизации, снижала количество белка в данной фракции до уровня интактных животных.

Строение антител

Антитела являются относительно крупными (~150 кДа - IgG) гликопротеинами , имеющими сложное строение. Состоят из двух идентичных тяжелых цепей (H-цепи, в свою очередь состоящие из V H , C Н 1, шарнира, C H 2- и C H 3-доменов) и из двух идентичных лёгких цепей (L-цепей, состоящих из V L - и C L - доменов). К тяжелым цепям ковалентно присоединены олигосахариды. При помощи протеазы папаина антитела можно расщепить на два Fab (англ. fragment antigen binding - антиген-связывающий фрагмент) и один (англ. fragment crystallizable - фрагмент, способный к кристаллизации). В зависимости от класса и исполняемых функций антитела могут существовать как в мономерной форме (IgG, IgD, IgE, сывороточный IgA), так и в олигомерной форме (димер-секреторный IgA, пентамер - IgM). Всего различают пять типов тяжелых цепей (α-, γ-, δ-, ε- и μ-цепи) и два типа легких цепей (κ-цепь и λ-цепь).

Классификация по тяжелым цепям

Различают пять классов (изотипов ) иммуноглобулинов, различающихся:

  • последовательностью аминокислот
  • молекулярной массой
  • зарядом

Класс IgG классифицируют на четыре подкласса (IgG1, IgG2, IgG3, IgG4), класс IgA - на два подкласса (IgA1, IgA2). Все классы и подклассы составляют девять изотипов, которые присутствуют в норме у всех индивидов. Каждый изотип определяется последовательностью аминокислот константной области тяжелой цепи.

Функции антител

Иммуноглобулины всех изотипов бифункциональны. Это означает, что иммуноглобулин любого типа

  • распознает и связывает антиген, а затем
  • усиливает уничтожение и/или удаление иммунных комплексов, сформированных в результате активации эффекторных механизмов.

Одна область молекулы антител (Fab) определяет её антигенную специфичность, а другая (Fc) осуществляет эффекторные функции: связывание с рецепторами, которые экспрессированы на клетках организма (например, фагоцитах); связывание с первым компонентом (C1q) системы комплемента для инициации классического пути каскада комплемента.

Имеет в виду то, что каждый лимфоцит синтезирует антитела только одной определенной специфичности. И эти антитела располагаются на поверхности этого лимфоцита в качестве рецепторов.

Как показывают опыты, все поверхностные иммуноглобулины клетки имеют одинаковый идиотип: когда растворимый антиген , похожий на полимеризованный флагеллин , связывается со специфической клеткой, то все иммуноглобулины клеточной поверхности связываются с данным антигеном и они имеют одинаковую специфичность то есть одинаковый идиотип.

Антиген связывается с рецепторами, затем избирательно активирует клетку с образованием большого количества антител. И так как клетка синтезирует антитела только одной специфичности, то эта специфичность должна совпадать со специфичностью начального поверхностного рецептора.

Специфичность взаимодействия антител с антигенами не абсолютна, они могут в разной степени перекрестно реагировать с другими антигенами. Антисыворотка , полученная к одному антигену, может реагировать с родственным антигеном, несущим одну или несколько одинаковых или похожих детерминант . Поэтому каждое антитело может реагировать не только с антигеном, который вызвал его образование, но и с другими, иногда совершенно неродственными молекулами. Специфичность антител определяется аминокислотной последовательностью их вариабельных областей.

Клонально-селекционная теория :

  1. Антитела и лимфоциты с нужной специфичностью уже существуют в организме до первого контакта с антигеном.
  2. Лимфоциты, которые участвуют в иммунном ответе, имеют антигенспецифические рецепторы на поверхности своей мембраны. У B-лимфоцитов рецепторы- молекулы той же специфичности, что и антитела, которые лимфоциты впоследствии продуцируют и секретируют.
  3. Любой лимфоцит несет на своей поверхности рецепторы только одной специфичности.
  4. Лимфоциты, имеющие антиген , проходят стадию пролиферации и формируют большой клон плазматических клеток. Плазматические клетки синтезируют антитела только той специфичности, на которую был запрограммирован лимфоцит-предшественник. Сигналами к пролиферации служат цитокины , которые выделяются другими клетками. Лимфоциты могут сами выделять цитокины.

Вариабельность антител

Антитела являются чрезвычайно вариабельными (в организме одного человека может существовать до 10 8 вариантов антител). Все разнообразие антител проистекает из вариабельности как тяжёлых цепей, так и лёгких цепей. У антител, вырабатываемых тем или иным организмом в ответ на те или иные антигены, выделяют:

  • Изотипическая вариабельность - проявляется в наличии классов антител (изотипов), различающихся по строению тяжёлых цепей и олигомерностью, вырабатываемых всеми организмами данного вида;
  • Аллотипическая вариабельность - проявляется на индивидуальном уровне в пределах данного вида в виде вариабельности аллелей иммуноглобулинов - является генетически детерминированным отличием данного организма от другого;
  • Идиотипическая вариабельность - проявляется в различии аминокислотного состава антиген-связывающего участка. Это касается вариабельных и гипервариабельных доменов тяжёлой и лёгкой цепей, непосредственно контактирующих с антигеном.

Контроль пролиферации

Наиболее эффективный контролирующий механизм заключается в том, что продукт реакции одновременно служит её ингибитором . Этот тип отрицательной обратной связи имеет место при образовании антител. Действие антител нельзя объяснить просто нейтрализацией антигена, потому что целые молекулы IgG подавляют синтез антител намного эффективнее, чем F(ab")2 -фрагменты. Предполагают, что блокада продуктивной фазы T-зависимого B-клеточного ответа возникает в результате образования перекрестных связей между антигеном, IgG и Fc - рецепторами на поверхности B-клеток. Инъекция IgM усиливает иммунный ответ . Так как антитела именно этого изотипа появляются первыми после введения антигена, то на ранней стадии иммунного ответа им приписывается усиливающая роль.

Обручения не было и никому не было объявлено о помолвке Болконского с Наташей; на этом настоял князь Андрей. Он говорил, что так как он причиной отсрочки, то он и должен нести всю тяжесть ее. Он говорил, что он навеки связал себя своим словом, но что он не хочет связывать Наташу и предоставляет ей полную свободу. Ежели она через полгода почувствует, что она не любит его, она будет в своем праве, ежели откажет ему. Само собою разумеется, что ни родители, ни Наташа не хотели слышать об этом; но князь Андрей настаивал на своем. Князь Андрей бывал каждый день у Ростовых, но не как жених обращался с Наташей: он говорил ей вы и целовал только ее руку. Между князем Андреем и Наташей после дня предложения установились совсем другие чем прежде, близкие, простые отношения. Они как будто до сих пор не знали друг друга. И он и она любили вспоминать о том, как они смотрели друг на друга, когда были еще ничем, теперь оба они чувствовали себя совсем другими существами: тогда притворными, теперь простыми и искренними. Сначала в семействе чувствовалась неловкость в обращении с князем Андреем; он казался человеком из чуждого мира, и Наташа долго приучала домашних к князю Андрею и с гордостью уверяла всех, что он только кажется таким особенным, а что он такой же, как и все, и что она его не боится и что никто не должен бояться его. После нескольких дней, в семействе к нему привыкли и не стесняясь вели при нем прежний образ жизни, в котором он принимал участие. Он про хозяйство умел говорить с графом и про наряды с графиней и Наташей, и про альбомы и канву с Соней. Иногда домашние Ростовы между собою и при князе Андрее удивлялись тому, как всё это случилось и как очевидны были предзнаменования этого: и приезд князя Андрея в Отрадное, и их приезд в Петербург, и сходство между Наташей и князем Андреем, которое заметила няня в первый приезд князя Андрея, и столкновение в 1805 м году между Андреем и Николаем, и еще много других предзнаменований того, что случилось, было замечено домашними.
В доме царствовала та поэтическая скука и молчаливость, которая всегда сопутствует присутствию жениха и невесты. Часто сидя вместе, все молчали. Иногда вставали и уходили, и жених с невестой, оставаясь одни, всё также молчали. Редко они говорили о будущей своей жизни. Князю Андрею страшно и совестно было говорить об этом. Наташа разделяла это чувство, как и все его чувства, которые она постоянно угадывала. Один раз Наташа стала расспрашивать про его сына. Князь Андрей покраснел, что с ним часто случалось теперь и что особенно любила Наташа, и сказал, что сын его не будет жить с ними.
– Отчего? – испуганно сказала Наташа.
– Я не могу отнять его у деда и потом…
– Как бы я его любила! – сказала Наташа, тотчас же угадав его мысль; но я знаю, вы хотите, чтобы не было предлогов обвинять вас и меня.
Старый граф иногда подходил к князю Андрею, целовал его, спрашивал у него совета на счет воспитания Пети или службы Николая. Старая графиня вздыхала, глядя на них. Соня боялась всякую минуту быть лишней и старалась находить предлоги оставлять их одних, когда им этого и не нужно было. Когда князь Андрей говорил (он очень хорошо рассказывал), Наташа с гордостью слушала его; когда она говорила, то со страхом и радостью замечала, что он внимательно и испытующе смотрит на нее. Она с недоумением спрашивала себя: «Что он ищет во мне? Чего то он добивается своим взглядом! Что, как нет во мне того, что он ищет этим взглядом?» Иногда она входила в свойственное ей безумно веселое расположение духа, и тогда она особенно любила слушать и смотреть, как князь Андрей смеялся. Он редко смеялся, но зато, когда он смеялся, то отдавался весь своему смеху, и всякий раз после этого смеха она чувствовала себя ближе к нему. Наташа была бы совершенно счастлива, ежели бы мысль о предстоящей и приближающейся разлуке не пугала ее, так как и он бледнел и холодел при одной мысли о том.
Накануне своего отъезда из Петербурга, князь Андрей привез с собой Пьера, со времени бала ни разу не бывшего у Ростовых. Пьер казался растерянным и смущенным. Он разговаривал с матерью. Наташа села с Соней у шахматного столика, приглашая этим к себе князя Андрея. Он подошел к ним.
– Вы ведь давно знаете Безухого? – спросил он. – Вы любите его?
– Да, он славный, но смешной очень.
И она, как всегда говоря о Пьере, стала рассказывать анекдоты о его рассеянности, анекдоты, которые даже выдумывали на него.
– Вы знаете, я поверил ему нашу тайну, – сказал князь Андрей. – Я знаю его с детства. Это золотое сердце. Я вас прошу, Натали, – сказал он вдруг серьезно; – я уеду, Бог знает, что может случиться. Вы можете разлю… Ну, знаю, что я не должен говорить об этом. Одно, – чтобы ни случилось с вами, когда меня не будет…
– Что ж случится?…
– Какое бы горе ни было, – продолжал князь Андрей, – я вас прошу, m lle Sophie, что бы ни случилось, обратитесь к нему одному за советом и помощью. Это самый рассеянный и смешной человек, но самое золотое сердце.
Ни отец и мать, ни Соня, ни сам князь Андрей не могли предвидеть того, как подействует на Наташу расставанье с ее женихом. Красная и взволнованная, с сухими глазами, она ходила этот день по дому, занимаясь самыми ничтожными делами, как будто не понимая того, что ожидает ее. Она не плакала и в ту минуту, как он, прощаясь, последний раз поцеловал ее руку. – Не уезжайте! – только проговорила она ему таким голосом, который заставил его задуматься о том, не нужно ли ему действительно остаться и который он долго помнил после этого. Когда он уехал, она тоже не плакала; но несколько дней она не плача сидела в своей комнате, не интересовалась ничем и только говорила иногда: – Ах, зачем он уехал!

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Биологический факультет

АНТИТЕЛА, КЛАССИФИКАЦИЯ И ФУНКЦИИ

Реферат

студента 4 курса 6 группы

КОВАЛЬЧУКА К.В.

Минск 2004г.

Открытие антител

Строение антител

Классификация антител

Функции антител

Литература

Открытие антител

Термин «антитело» был введён в употребление в конце XIX века. В 1890 году Беринг (Behring) и Китасато (Kitasato) провели эксперименты, в которых они изучали на морских свинках действие дифтерийного и столбнячного токсинов. Они вводили животным сублетальную дозу токсина, через некоторое время брали у них сыворотку и вводили её вместе с летальной дозой токсина другим животным, в результате чего животные не погибали. Был сделан вывод, что после иммунизации токсином в крови животных появляется вещество, способное нейтрализовать его и тем самым предотвратить заболевание. Данное вещество получило название антитоксина, а затем был введён более общий термин - антитело; вещества вызывающие образование антител стали называть антигенами.

Только в 1939 году Тизелиус (Tiselius) и Кэбет (Kabat) показали, что антитела содержатся в определённой фракции белков сыворотки. Они иммунизировали животное овальбумином и из полученной сыворотки взяли две пробы, в одну из них был добавлен овальбумин и образовавшийся осадок (комплекс антитело-овальбумин) удалили. Электрофорез выявил, что в пробе куда добавлялся овальбумин, содержание г-глобулинов значительно ниже чем в другой пробе. Это указывало на то, что антитела являются г-глобулинами. Чтобы отличить их от других белков, содержащихся в этой фракции глобулинов, антитела были названы иммуноглобулинами. Сейчас известно, что антитела обнаруживаются в значительных количествах также во фракциях б- и в-глобулинов.

Структура антител была установлена в ходе разнообразных экспериментов. В основном они заключались в том, что антитела обрабатывались протеолитическими ферментами (папаин, пепсин), и подвергались алкилированию и восстановлению меркаптоэтанолом. Затем исследовались свойства полученных фрагментов: определялась их молекулярная масса (хроматографией), четвертичная структура (рентгеноструктурным анализом), способность связываться с антигеном и т.п. Также использовались антитела к данным фрагментам: выяснялось, могут ли антитела к одному типу фрагментов связываться с фрагментами другого типа. На основе полученных данных была построена описываемая ниже модель молекулы антител.

Строение антител

Молекула антитела состоит из четырёх полипептидных цепей (рис.1): двух тяжёлых (H; мол.масса 50-70 кДа) и двух лёгких (L; мол.масса 23 кДа). Цепи соединены нековалентными связями (водородные, гидрофобные связи) и дисульфидными мостиками и состоят из двух (лёгкая цепь) или четырёх (тяжёлая цепь) доменов длиной около 110 аминокислотных остатков. Вариабельные домены VH и VL, представляющие собой N-концевые участки цепей, образуют антигенсвязывающий сайт. Помимо них лёгкие цепи содержат по одному (СL), а тяжёлые по три-четыре (СH1-4) константных домена.

При ферментативном расщеплении антител протеолитическим ферментом папаином образуются три фрагмента: два идентичных антигенсвязывающих фрагмента (Fab) и один кристаллизуемый фрагмент (Fc). Fab-фрагмент состоит из интактной L-цепи, связанной дисульфидной связью с доменами СH1 и VH, его N-концевая часть (Fv-фрагмент) обладает антигенсвязывающей активностью. Fc-фрагмент состоит из двух соединённых дисульфидной связью пар доменов CH2 и CH3. Данный фрагмент не участвует в связывании антигенов, а выполняет эффекторные функции - реагирование с клетками и факторами комплемента.

Способность связывания антитела с тем или иным антигеном определяется аминокислотным составом вариабельных доменов, а точнее их гипервариабельных участков. Для этих участков характерна очень высокая изменчивость последовательности аминокислот. Каждый VH и VL домен содержит по три гипервариабельных участка, которые собственно и образуют антигенсвязывающие сайты. Последовательности между ними названы каркасными; для них характерна более низкая структурная изменчивость.

Рис. 1. Строение молекулы антитела. H и L, тяжёлая и лёгкая цепи; CDR, гипервариабельные участки.

Аминокислотная последовательность константной области слабо варьирует. Секвенирование лёгкой цепи выявило существование двух основных вариантов аминокислотных последовательностей СL-доменов, что привело к выделению двух типов лёгких цепей - каппа (к) и лямбда (л). Молекула антитела может одновременно содержать либо две к-цепи, либо две л-цепи (у антител человека чаще встречаются к-цепи).

Также определение аминокислотных последовательностей позволило выделить пять типов СH-областей и соответственно - тяжёлых цепей (б, д, е, г, м). Цепи м и е содержат по четыре константных домена, остальные цепи - три константных домена, а также шарнирную область между доменами СH1 и CH2. В зависимости от того, какой тип тяжёлой цепи содержит антитело, различают пять классов иммуноглобулинов: IgA (тяжёлая цепь типа б), IgD (д), IgE (е), IgG (г), IgM (м). Из-за некоторых различий в аминокислотных последовательностях выделяют несколько типов л-цепей, а также несколько типов б- и г-цепей (и соответственно несколько подклассов IgG и IgA). С тяжёлыми цепями (в первую очередь с CH2-доменами) связаны несколько олигосахаридных цепей, которые вероятно увеличивают растворимость антител и участвуют в связывании с компонентами комплемента и клеточными рецепторами.

В доменах полипептидные цепи укладываются формируя в-складчатые слои, в которых антипараллельные цепи соединены петлями (рис.2). Эти петли могут иметь различную длину и аминокислотные последовательности, что очень важно, т.к. именно они формируют антигенсвязывающий сайт. В пределах каждого домена два в-слоя соединены дисульфидной связью и стабилизированы гидрофобными взаимодействиями. Четвертичная структура в форме Y (рис.3) формируется благодаря нековалентным взаимодействиям между доменами. Между доменами CH2 расположены молекулы углеводов, что приводит к выступанию этих доменов и делает их более доступными для взаимодействия с разнообразными молекулами, такими как компоненты системы комплемента.

Рис.2. Двумерная схема укладки полипептидной цепи в пределах домена VL: два в-складчатых слоя, соединённых дисульфидной связью (чёрная полоска).

Рис.3. Схема, показывающая взаимодействие между доменами лёгкой и тяжёлой цепи. Между доменами CH2 расположены молекулы углеводов.Показаны гипервариабельные регионы (CDRs).

Классификация антител

Как уже было упомянуто выше, в зависимости от типа тяжёлой цепи различают пять классов иммуноглобулинов.

IgG составляют большинство антител сыворотки крови. Большинство антител вторичного иммунного ответа и антитоксинов представлено именно иммуноглобулинами класса G. Материнские IgG обеспечивают пассивный иммунитет ребёнка в первые несколько месяцев жизни, попадая в кровь плода через плаценту. IgG активируют систему комплемента и связываются с поверхностными антигенами клеток, делая тем самым эти клетки более доступными для фагоцитоза (опсонизация). Способны связываться с тканями вызывая анафилаксические реакции.

Молекулы IgM состоят из пяти одинаковых четырёхцепочечных субъединиц, соединённых дисульфидными связями. В их составе также присутствует дополнительная полипептидная цепь (J-цепь), образующая домен иммуноглобулинового типа и связанная дисульфидными связями с С-концевыми пептидами (18 аминокислотных остатков) тяжёлых цепей отдельных мономеров.Предположительно она участвует в полимеризации мономеров. Иммуноглобулины класса М содержатся преимущественно в крови. Доминируют в качестве «ранних» антител (первыми появляются при развитии иммунного ответа). Благодаря множеству участков связывания вызывают агглютинацию клеток. Более эффективно, чем IgG активируют комплемент.

IgA преобладают среди антител серозно-слизистых секретов (слюна, молозиво, молоко, секрет дыхательных путей), где они представлены в основном димерной формой. Как и IgM содержат С-концевой пептид, к которому может присоединятся J-цепь, связывая два мономера в димер. С данным комплексом дополнительно связывается белок, называемый секреторным компонентом, который способствует доставке антител в секреты и защищает их от протеолиза. В сыворотке человека представлены в основном мономерной формой, а в сыворотке других млекопитающих в основном димером. Препятствуют проникновению вирусов, микроорганизмов через слизистые оболочки.

IgD и IgE присутствуют в сыворотке в очень низких концентрациях. IgDчасто встречаются на цитоплазматических мембранах В-клеток и предположительно участвуют в антиген-зависимой дифференцировке лимфоцитов. IgEвстречаются на мембранах базофилов и тучных клеток. Участвуют в аллергических реакциях, вызывая секрецию клеткой-носителем IgE гистамина и других вазоактивных веществ, в ответ на связывание молекулы IgE с антигеном. Возможно, играют существенную роль в антигельминтозном иммунитете.

Функции антител

Антитела синтезируются В-лимфоцитами и образующимися из них плазматическими клетками. Их молекулы встроены в цитоплазматическую мембрану В-лимфоцитов, где они функционируют в качестве антигенспецифичных рецепторов. Большинство В-лимфоцитов крови человека экспрессирует на своей поверхности иммуноглобулины двух классов - IgM и IgD. Но в определённых областях тела могут встречаться с высокой частотой В-клетки, несущие антитела других классов (например, IgA в слизистой оболочке кишечника). Плазматические клетки секретируют антитела в плазму крови и тканевую жидкость. Все антитела, синтезируемые одной В-клеткой (или плазматической клеткой), имеют идентичный антигенсвязывающий центр и могут связываться только с одним антигеном.

Первичной функцией антител является связывание с чужеродными (в норме) антигенами с последующей их инактивацией. Антитела способны инактивировать токсины связываясь с зонами молекулы токсина ответственными либо за адсорбцию на клеточных рецепторах либо непосредственно за токсическое действие. Аналогично связывание антител с белками, необходимыми для адсорбции вируса на рецепторы клеток, приводит к инактивации вирионов.

Кроме того, антитела способны вовлекать в иммунный ответ другие элементы иммунной системы: систему комплемента и клетки хозяина. С константными доменами тяжёлой цепи антител классов G и M (с доменами CH2 и CH3 соответственно) способен связываться компонент комплемента C1q. Это вызывает каскад реакций (процесс активации комплемента по классическому пути), в конечном счете приводящих к лизису клетки, с антигенами которой были связаны антитела. Некоторые клетки организма несут на своей поверхности Fc-рецепторы, с которыми посредством Fc-фрагмента могут связываться молекулы антител. Данные рецепторы имеются у макрофагов, что позволяет им распознавать комплексы антиген-антитело с последующим их фагоцитированием (антитела являются опсонинами, т.е. молекулами, которые при связывании с антигенами облегчают их фагоцитирование). Также Fc-фрагмент ответственен за фиксацию антител на клетках определённых тканей и развитие анафилоксических реакций.

К любым антигенам в организме животного изначально существуют антитела. Это предполагает, что каждый организм продуцирует миллионы различных иммуноглобулинов, различающихся своими центрами связывания антигенов. Такое разнообразие обеспечивается несколькими механизмами. Лёгкие и тяжёлые цепи молекул антител кодируются несколькими типами генных сегментов: лёгкая цепь - тремя типами сегментов (V, J, C), тяжёлая - четырьмя (V, D, J, C). В геноме обычно присутствует от нескольких до нескольких сотен сегментов каждого типа, несколько различающихся по нуклеотидной последовательности. Для синтеза цельного полипептида (лёгкой или тяжёлой цепи) необходимо объединение нуклеотидных последовательностей сегментов каждого типа. Такое объединение происходит сначала на уровне ДНК (соматическая рекомбинация), а затем на уровне матричных РНК (сплайсинг). В результате образуется огромное количество вариантов мРНК и соответственно полипептидных цепей. Во время соматической рекомбинации и сплайсинга могут происходить вставки и делеции нуклеотидов, что вместе с повышенной частотой мутаций в генах антител ещё больше повышает разнообразие этих уникальных по своим свойствам белков.

Литература

1. Иммунология / Ройт А., Бростофф Дж., Мейл Д.-М.:Мир, 2000.-592 с.

2. Иммунология: В 3-х т.; т.1 / Под ред. У. Пола.-М.: Мир, 1987-88.-476 с.

Подобные документы

    Природа антител, их основные функции и структура. Молекулярное строение антител. Структурно-функциональные особенности иммуноглобулинов различных классов. Механизм взаимодействия антитела с антигеном. Теории разнообразия антител, их ключевые свойства.

    реферат , добавлен 22.05.2015

    Характеристика иммунной системы, ее структура, предназначение и функции основных органов. Механизм иммунной защиты, выработка антител, основные классы иммуноглобулинов. Особенности последствий дефицита витаминов, их значение для организма человека.

    реферат , добавлен 04.06.2010

    Технология получения особых антител, которые помогают иммунной системе обнаруживать опухолевые клетки и избавиться от них, разработанная в 1975 г. Г. Колером и Г. Милштейном. Моноклональные антитела в лечении онкологических заболеваний, механизм действия.

    презентация , добавлен 04.10.2016

    Получение антиидиотипических и моноклональных антител овцы межвидовым слиянием клеток. Области применения моноклональных антител и их методы получения. Применение эрлифтных ферментеров для получения антител. Система управления аффинной хроматографией.

    реферат , добавлен 06.08.2009

    Методы получения полианилина, его строение и электрохимические свойства. Изучение влияний условий получения полианилина и измерения сигнала сенсора на основе электрода, модифицированного полианилином, на характеристики детектирования антител к ДНК.

    курсовая работа , добавлен 20.04.2017

    Характеристика системы иммунной защиты организма. Приобретенный иммунитет и его формы. Выработка антител и регуляция их продукции. Образование клеток иммунологической памяти. Возрастные особенности иммунитета, вторичные (приобретенные) иммунодефициты.

    реферат , добавлен 11.04.2010

    Иммуногенность антигена как способность в организме иммунизированного животного к образованию антител. Понятие "чужеродности" иммуногена, ее зависимость от генетических особенностей иммунизируемого животного. Получение специфических антисывороток.

    реферат , добавлен 20.09.2009

    Риск поражения иммунной системы человека. Симптомы, профилактика и лечение болезни. Состояние ВИЧ-инфицированного больного. Обнаружение ВИЧ-инфекции с помощью анализа крови на наличие антител. Влияние вируса на иммунную систему. СПИД и его стадии.

    реферат , добавлен 24.01.2012

    Смысл и основные положения гибридомной технологии. Некоторые приемы, позволяющие усилить иммунный ответ. Использование препаратов, полученных на основе моноклональных антител, которые связываются только с клеточными антигенами раковых клеток (РеоПро).

    курсовая работа , добавлен 20.05.2015

    Разработка способа получения моноклональных антител на основе гибридомной технологии. Роль гибридомы в фундаментальной иммунологии. Создание на основе клонально-селекционной теории иммунитета. Методы диагностики заболеваний и злокачественных опухолей.

Антитела: это белки вырабатываемые клетками лимфоидных органов (В лимфоцитами) под влиянием антигена и способные вступать с ними в специфическую связь. При этом антитела могут нейтрализовать токсины бактерий и вирусов, их называют антитоксины и вируснейтрализующие антитела.

Могут осаждать растворимые антигены - преципитины, склеивать корпускулярные антигены - агглютинины.

Природа антител: антитела относятся к гаммаглобулинам. В организме гаммаглобулины вырабатываются плазмоцитами и составляют в сыворотки крови 30% от всех белков.

Гаммаглобулины несущие функцию антител называются иммуноглобулинами и обозначаются Ig. Белки Ig по химическому составу относятся к гликопротеидам, то есть состоят из протеинов, сахаров, 17 аминокислот.

Молекула Ig:

При электронной микроскопии молекула Ig имеет форму игрек с изменяющимся углом.

Структурная единица Ig - мономер.

Мономер состоит из 4 полипептидных цепей связанных друг с другом дисульфидными связями. Из 4 цепей две цепи длинные по середине изогнутые. Молекулярная масса от 50-70 кД - это так называемые тяжелые Н цепи, а две цепи короткие прилегают к верхним отрезкам Н цепей, молекулярная масса 24 кД - это легкие L цепи.

Вариабельные легкие и тяжелые цепи совместно образуют участок, который специфически связывается с антигеном - антигенсвязывающий центр Fab- фрагмент, Fc- фрагмент отвечающий за активацию комплемента.

Fab (англ. fragment antigen binding -- антиген-связывающий фрагмент) и один Fc (англ. fragment crystallizable -- фрагмент, способный к кристаллизации).

Классы иммуноглобулинов:

Ig М - составляет от 5-10% сывороточных иммуноглобулинов. Это самая крупная молекула из всех пяти классов иммуноглобулинов. Молекулярная масса 900 тыс. кД. Первым появляется в сыворотки крови при внедрении антигена. Наличие Ig М указывает на острый процесс. Ig М агглютинирует и лизирует антиген, а также активирует комплемент. Привязан к кровеносному руслу.

Ig G - составляет от 70-80 % сывороточных иммуноглобулинов. Молекулярная масса 160 тыс. кД. Синтезируется при вторичном иммунном ответе, способен преодолевать плацентарный барьер и обеспечивать иммунную защиту новорожденных впервые 3-4 месяца, затем разрушается. В начале заболевания количество Ig G незначительно, но по мере развития болезни количество их увеличивается. Ему принадлежит главная роль в защите от инфекций. Высокие титры Ig G свидетельствуют о том, что организм находится на стадии выздоровления или на недавно перенесенную инфекцию. Обнаруживается в сыворотки крови и через слизистую кишечника распространяется в тканевой жидкости.

Ig А - составляет от 10-15%, молекулярная масса 160 тыс. кД. Играет важную роль в защите слизистых оболочек дыхательных и пищеварительных трактов, мочеполовой системы. Различают сывороточные и секреторные Ig А. Сывороточный обезвреживает микроорганизмы и их токсины, не связывает комплемент и не проходит через плацентарный барьер.

Секреторные Ig А активируют комплемент и стимулируют фагоцитарную активность в слизистых оболочках, содержится преимущественно в выделениях слизистых оболочек, слюне, слезной жидкости, поте, отделяемого нося, где обеспечивает защиту поверхностей сообщающихся с внешней средой от микроорганизмов. Синтезируется плазматическими клетками. В сыворотке человека, представлен мономерной формой. Обеспечивает местный иммунитет.

Ig Е- его в сыворотке количество невелико и лишь небольшая часть плазматических клеток синтезирует Ig Е. Образуются в ответ на аллергены и взаимодействуя с ними вызывают реакцию ГНТ. Синтезируется В-лимфоцитами и плазматическими клетками. Через плацентарный барьер не проходит.

Ig D -участие его недостаточно изучено. Почти весь находится на поверхности лимфоцитов. Продуцируется клетками миндалин и аденоидов. IgD не связывает комплемент, не проходит через плацентарный барьер. Ig D и Ig А взаимосвязаны между собой осуществляют активацию лимфоцитов. Концентрация Ig D увеличивается при беременности, при бронхиальной астме, при системной красной волчанке.

Нормальные антитела (естественные)

В организме содержится определенный уровень их, образуются без явлений антигенной стимуляции. К ним относятся антитела против эритроцитарных антигенов, группы крови, против кишечных групп бактерий.

Процесс выработки антител, их накопление и исчезновение имеют определенные характеристики, которые различны при первичном иммунном ответе (это ответ при первичной встречи с антигеном) и вторичном иммунном ответе (это ответ при повторном контакте с тем же антигеном спустя 2-4 недель).

Синтез антител при любом иммунном ответе протекает в несколько стадий - это латентная стадия, логарифмическая, стационарная и фаза снижения антител.

Первичный иммунный ответ:

Латентная фаза: в этот период происходит процесс распознавания антигена и формирования клеток, которые способны синтезировать антитела к нему. Продолжительность этого периода 3-5 дней.

Логарифмическая фаза: скорость синтеза антител невелика. (продолжительность 15-20 дней).

Стационарная фаза: титры синтезируемых антител достигают максимальных значений. Первыми синтезируются антитела, относящиеся к иммуноглобулинам класса М, затем G. Позже могут появляться Ig А и Ig Е.

Фаза снижения: уровень антител снижается. Продолжительность от1-6 мес.

Вторичный иммунный ответ.

В ответ на присутствие антигенов. Для каждого антигена формируются соответствующие ему специализировавшиеся плазматические клетки, вырабатывающие специфичные для этого антигена антитела. Антитела распознают антигены, связываясь с определённым эпитопом - характерным фрагментом поверхности или линейной аминокислотной цепи антигена.

Антитела состоят из двух лёгких цепей и двух тяжелых цепей. У млекопитающих выделяют пять классов антител (иммуноглобулинов) - IgG, IgA, IgM, IgD, IgE, различающихся между собой по строению и аминокислотному составу тяжёлых цепей и по выполняемым эффекторным функциям.

История изучения

Самое первое антитело было обнаружено Берингом и Китазато в 1890 году , однако в это время о природе обнаруженного столбнячного антитоксина, кроме его специфичности и его присутствия в сыворотке иммунного животного, ничего определенного сказать было нельзя. Только с 1937 года - исследований Тизелиуса и Кабата, начинается изучение молекулярной природы антител. Авторы использовали метод электрофореза белков и продемонстрировали увеличение гамма-глобулиновой фракции сыворотки крови иммунизированных животных. Адсорбция сыворотки антигеном , который был взят для иммунизации, снижала количество белка в данной фракции до уровня интактных животных.

Строение антител

Антитела являются относительно крупными (~150 кДа - IgG) гликопротеинами , имеющими сложное строение. Состоят из двух идентичных тяжелых цепей (H-цепи, в свою очередь состоящие из V H , C H1 , шарнира, C H2 и C H3 доменов) и из двух идентичных лёгких цепей (L-цепей, состоящих из V L и C L доменов). К тяжелым цепям ковалентно присоединены олигосахариды. При помощи протеазы папаина антитела можно расщепить на два Fab (англ. fragment antigen binding - антиген-связывающий фрагмент) и один (англ. fragment crystallizable - фрагмент, способный к кристаллизации). В зависимости от класса и исполняемых функций антитела могут существовать как в мономерной форме (IgG, IgD, IgE, сывороточный IgA) так и в олигомерной форме (димер-секреторный IgA, пентамер - IgM). Всего различают пять типов тяжелых цепей (α-, γ-, δ-, ε-и μ- цепи) и два типа легких цепей (κ-цепь и λ-цепь).

Классификация по тяжелым цепям

Различают пять классов (изотипов ) иммуноглобулинов, различающихся:

  • величиной
  • зарядом
  • последовательностью аминокислот
  • содержанием углеводов

Класс IgG классифицируют на четыре подкласса (IgG1, IgG2, IgG3, IgG4), класс IgA - на два подкласса (IgA1, IgA2). Все классы и подклассы составляют девять изотипов, которые присутствуют в норме у всех индивидов. Каждый изотип определяется последовательностью аминокислот константной области тяжелой цепи.

Функции антител

Иммуноглобулины всех изотипов бифункциональны. Это означает, что иммуноглобулин любого типа

  • распознает и связывает антиген, а затем
  • усиливает киллинг и/или удаление иммунных комплексов, сформированных в результате активации эффекторных механизмов.

Одна область молекулы антител (Fab) определяет ее антигенную специфичность, а другая (Fc) осуществляет эффекторные функции: связывание с рецепторами, которые экспрессированы на клетках организма (например, фагоцитах); связывание с первым компонентом (C1q) системы комплемента для инициации классического пути каскада комплемента.

Имеет в виду то, что каждый лимфоцит синтезирует антитела только одной определенной специфичности. И эти антитела располагаются на поверхности этого лимфоцита в качестве рецепторов.

Как показывают опыты, все поверхностные иммуноглобулины клетки имеют одинаковый идиотип: когда растворимый антиген , похожий на полимеризованный флагеллин , связывается со специфической клеткой, то все иммуноглобулины клеточной поверхности связываются с данным антигеном и они имеют одинаковую специфичность то есть одинаковый идиотип.

Антиген связывается с рецепторами, затем избирательно активирует клетку с образованием большого количества антител. И так как клетка синтезирует антитела только одной специфичности, то эта специфичность должна совпадать со специфичностью начального поверхностного рецептора.

Специфичность взаимодействия антител с антигенами не абсолютна, они могут в разной степени перекрестно реагировать с другими антигенами. Антисыворотка, полученная к одному антигену, может реагировать с родственным антигеном, несущим одну или несколько одинаковых или похожих детерминант . Поэтому каждое антитело может реагировать не только с антигеном, который вызвал его образование, но и с другими, иногда совершенно неродственными молекулами. Специфичность антител определяется аминокислотной последовательностью их вариабельных областей.

Клонально-селекционная теория :

  1. Антитела и лимфоциты с нужной специфичностью уже существуют в организме до первого контакта с антигеном.
  2. Лимфоциты, которые участвуют в иммунном ответе, имеют антигенспецифические рецепторы на поверхности своей мембраны. У B-лимфоцитов рецепторы- молекулы той же специфичности, что и антитела, которые лимфоциты впоследствии продуцируют и секретируют.
  3. Любой лимфоцит несет на своей поверхности рецепторы только одной специфичности.
  4. Лимфоциты, имеющие антиген , проходят стадию пролиферации и формируют большой клон плазматических клеток. Плазматические клетки синтезируют антитела только той специфичности, на которую был запрограммирован лимфоцит-предшественник. Сигналами к пролиферации служат цитокины , которые выделяются другими клетками. Лимфоциты могут сами выделять цитокины.

Вариабельность антител

Антитела являются чрезвычайно вариабельными (в организме одного человека может существовать до 10 8 вариантов антител). Все разнообразие антител проистекает из вариабельности как тяжёлых цепей, так и лёгких цепей. У антител, вырабатываемых тем или иным организмом в ответ на те или иные антигены, выделяют:

  • Изотипическая вариабельность - проявляется в наличии классов антител (изотипов), различающихся по строению тяжёлых цепей и олигомерностью, вырабатываемых всеми организмами данного вида;
  • Аллотипическая вариабельность - проявляется на индивидуальном уровне в пределах данного вида в виде вариабельности аллелей иммуноглобулинов - является генетически детерминированным отличием данного организма от другого;
  • Идиотипическая вариабельность - проявляется в различии аминокислотного состава антиген-связывающего участка. Это касается вариабельных и гипервариабельных доменов тяжёлой и лёгкой цепей, непосредственно контактирующих с антигеном.

Контроль пролиферации

Наиболее эффективный контролирующий механизм заключается в том, что продукт реакции одновременно служит ее ингибитором . Этот тип отрицательной обратной связи имеет место при образовании антител. Действие антител нельзя объяснить просто нейтрализацией антигена, потому что целые молекулы IgG подавляют синтез антител намного эффективнее, чем F(ab")2 -фрагменты. Предполагают, что блокада продуктивной фазы T-зависимого B-клеточного ответа возникает в результате образования перекрестных связей между антигеном, IgG и Fc - рецепторами на поверхности B-клеток. Инъекция IgM, усиливает иммунный ответ . Так как антитела именно этого изотипа появляются первыми после введения антигена, то на ранней стадии иммунного ответа им приписывается усиливающая роль.

  • А. Ройт, Дж. Брюсстофф, Д. Мейл. Иммунология- М.: Мир, 2000 - ISBN 5-03-003362-9
  • Иммунология в 3 томах / Под. ред. У. Пола.- М.:Мир, 1988
  • В. Г. Галактионов. Иммунология- М.: Изд. МГУ, 1998 - ISBN 5-211-03717-0

См. также

  • Абзимы - каталитически активные антитела
  • Авидность , аффинность - характеристики связывания антигена и антитела